IDENTIFICATION AND ASSESSMENT OF ECOLOGICALLY SIGNIFICANT WETLAND COMMUNITIES IN NORTH CENTRAL, NORTHWESTERN, AND THE PANHANDLE OF OKLAHOMA: FINAL REPORT

Bruce W. Hoagland¹, Ian Butler, and Newell A. McCarty

Oklahoma Biological Survey/Oklahoma Natural Heritage Inventory

(¹ and Department of Geography)

University of Oklahoma

Introduction

Wetland ecosystems are a recognized conservation priority, due to the loss of wetland ecosystems throughout the United States (Kusler 1983, Tiner 1984). It is estimated that the United States has lost more than 50% of the wetlands extant in the eighteenth century and is currently losing 400,000 acres per year (Tiner 1984, Dahl 1990). Sixty-seven percent of Oklahoma's original wetlands were lost in the last 200 years (Dahl 1990). Bottomland hardwood forests have suffered an 85% loss in acreage (Brabander, et al. 1985, Neal 1990). Many factors have contributed to the loss and degradation of wetland ecosystems, including real estate development, industrialization, agricultural conversion, and timber harvest (Mitch and Gosselink 1993).

The destruction of wetlands has produced a fragmented landscape which can reduce biological diversity and ecosystem function (Saunders 1991). Wetland ecosystems harbor a higher portion of species relative to terrestrial ecosystems, enhancing the value for biodivesity conservation. As a result, a greater number of plant and animal species are imperiled by the destruction of wetland plant communities. Angermeier and Karr (1994) report that among animal taxa found in wetlands, 20% of fishes, 36% of crayfishes, and 55% of mussels and 7% of mammals and birds were extinct or imperiled.

Objectives

The objective of this study was to locate and document the current vegetation of extant wetland plant communities. We censussed wetlands in 27 north-central and northwestern Oklahoma counties. Potential wetland sites were located using a combination of aerial photography, ground reconnaissance, and consultation with local experts. Once located, quantitative data were collected from the wetland site. In addition to multivariate statistical analysis, site data were deposited in the Oklahoma Natural Heritage Inventory Element Occurrence database. The ONHI database serves as a centralized and continually updated inventory of biological diversity in Oklahoma.

Study Area

Geology and geomorphology is a key factor in determining the distribution of vegetation. The study area consisted of 27 counties in northwest Oklahoma and the panhandle (Figure 1) which covers a diverse range of geomorphology. For example, the High Plains geomorphic province, with gently rolling hills composed of tertiary sands and gravels, includes all of the Panhandle and portions of Ellis, Harper, Roger Mills, and Woodward counties (Curtis and Ham 1979). The most conspicuous wetland features in this area are Playa Lakes and herbaceous riparian communities. The Western Sandstone Hills and Western Redbed Plains provinces are composed of redstone and shale of Permian age and occurs in Harper, Dewey, Woodward, Blaine and Canadian counties (Curtis and Ham 1979). The most conspicuous wetland features in this province is riparian vegetation. The Western Sand Dune Belts follow major stream in the study area (i.e., Canadian, North Canadian, Cimarron, and Salt Fork Rivers) and are composed of Quaternary sand and alluvium (Curtis and Ham 1979). In addition to riparian vegetation, interdunal swale ponds are an important wetland resource in the province. The most extensive geomorphic province in the study area is the Central Redbed Plains, a region of red Permian shale and sandstone forming rolling hills and broad floodplains (Curtis and Ham 1979). Much of the wetland vegetation in this province is located along major streams. The Northen Limestone Cuesta Plains occur in western Osage, Pawnee and eastern Payne, Kay, Noble and Lincoln counties. The province is composed of limestone capped cuesta plains. The limestone substrate fosters the persistence of prairie vegetation. Finally, the Eastern Sandstone Cuesta plains, a region of Pennsylvanian sandstone, occupies the eastern portion of the study area (Curtis and Ham 1979).

Major streams draining the study area included the Beaver/Canadian, Canadian, Cimarron, Arkansas, Chikaskia, Caney, and Deep Fork Rivers. Floodplain geology of these streams is quaternary alluvium ranging from 25 - 100 feet in depth. Several major rservoirs with established wetland vegetation exist in the study area. Some of the more prominent impoundments include Great Slat Plains, Fort Supply, Optima, Etling, Hulah, Kaw, Hefner, Foss, and Canton.

Potential natural vegetation in the study area ranges from pinyon pine-juniper woodlands and shortgrass prairie to post oak blackjack forest and woodland (Duck and Fletcher 1945). In the western portion of the study area there is a small inclusion of Rocky Mountain front range vegetation, consisting of pinyon pine (*Pinus edulis*) and one-seed juniper (*Juniperus monosperma*) (Hoagland 2000). However, the predominant vegetation of the Panhandle is shortgrass prairie composed of blue grama (*Bouteloua gracilis*) and buffalograss (*Buchloe dactyloides*) (Bruner 1931, Blair and Hubbell 1938, Hoagland 2000).

Vegetation in the western tier counties of the study area fall within the mixedgrass prairie. The dominant species are little bluestem (*Schizachyrium scoparium*), dropseeds

(*Sporobolus* spp.), and sideoats grama (*Bouteloua curtipendula*). However, this region includes several subtypes, such as the shinnery (*Quercus havardii*) and sand sage (*Artemisia filifolia*) shrublands (Bruner 1931, Hoagland 2000). Both vegetation types are restricted to deep sand deposits.

The predominant upland forest type is Post oak (*Quercus stellata*) - blackjack (*Q. marilandica*) (Duck and Fletcher 1945, Rice and Penfound 1959). This vegetation is most abundant in the region known as the cross timbers, which form a mosiac of forest, woodland and grassland (Hoagland et al. 1999). Within this area, tallgrass prairie vegetation becomes increasingly abundant. In fact, the distribution of grassland and forest vegetation is dictated by the prevalence of suppression of fire (Rice and Penfound 1959, Hoagland et al 1999).

Methods

Wetland sties were identified by review of USGS 7.5 minute topographic quadrangles and National Wetland Inventory (NWI) maps. In addition, knowledgeable individuals were contacted from the following state and federal agencies: USDA Natural Resource Conservation Service District/County Offices, Oklahoma Commission District/County Offices, Oklahoma Department of Wildlife Conservation, and United States Fish and Wildlife Service (members of these agencies were extremely helpful and their assistance was deeply appreciated). Potential sites were then reconnoitered and prioritized for evaluation. Landownership was determined and in order to gain access to potential sites.

4

Quantitative data were gathered at wetland sites using five 10M x10M guadrats arranged in a "cluster." A cluster consisted of a central quadrat, with an additional quadrat placed in each of the four cardinal directions 20m from the central quadrat. The use of five quadrats depended upon the shape and size of the site. For example, narrow riparian areas may only allow for three quadrats or one quadrat in the case of a small interdunal pond. Once established, every species within the quadrat is recorded. Percent coverage was visually estimated in 5% increments for herbaceous and small woody plants (Mueller-Dumbois and Ellenberg 1974, Barbour et. al 1987, Kent and Coker 1992). When trees were present, the diameter at breast height (DBH = 1.5m) for stems exceeding 2.0 cm in diameter was recorded.

Vegetation data were compiled into a species-by-site matrix for multivariate analysis. Data were analyzed using TWINSPAN (Hill 1979, Gauch 1982, Kent and Coker 1992) to determine wetland vegetation types (dominance types, sensu, Cowardin et al., 1979). Species importance values were averaged for each TWINSPAN cluster in order to describe the vegetation types they represented. Nomenclature for plant species follows Kartesz (1994).

Results and Discussion

A total of 105 sites were selected for quantitative sampling (Table 1) and 207 species were encountered throughout the study area. The number of plots used at each site varied based upon the six and geometry of the site. The majority of sites were sampled with three quadrats (Table 2), because a number of sites were located in narrow riparian zones or small interdunal ponds.

5

Twenty-six major and four vegetation subtypes were recognized based upon TWINSPAN results (Table 3). Five sites were initially removed to reduce outlier effects. In addition to gathering quantitative vegetation, sites were placed into the Cowardin et al. (1979) classification scheme (Table 4). Descriptions of each vegetation association follows.

Forest vegetation associations

1. Sycamore (Platanus occidentalis) - boxelder (Acer negundo) forest vegetation

Habitat: stream margins. Limited to the eastern edge of the study area.

Associated species: river birch (*Betula nigra*), sugarberry (*Celtis laevigata*), ryegrass (*Elymus villosa*), Virginia creeper (*Parthenocissus quinquefolia*).

2. Silver maple (Acer saccharinum) - boxelder (Acer negundo) forest vegetation

Habitat: stream margins. Limited to the eastern edge of the study area.

Associated species: False indigo (*Amorpha fruticosa*), nettle (*Boehmeria cylindrica*), and poison ivy (*Toxicodendron radicans*).

3. Pecan (Carya illinoensis) - sugarberry (Celtis laevigata) forest vegetation

Habitat: floodplains, eastern and central portions of the study area.

Associated species: green ash (*Fraxinus pennsylvanica*), deciduous holly (*Ilex decidua*), soapberry (*Sapindus drummondii*), and poison ivy (*Toxicodendron radicans*).

4. Bur oak (Quercus macrocarpa) - Shumard oak (Quercus shumardii) forest vegetation

Habitat: floodplains. Limited to the eastern and central portion of study area.

Associated species: fish-on-a-pole (*Chasmanthium latifolium*), lowland wildrye (*Elymus villosa*), cottonwood (*Populus deltoides*), switchgrass (*Panicum virgatum*), and American elm (*Ulmus americana*).

Woodland vegetation associations

5. Black willow (Salix nigra) woodland vegetation

Habitat: stream margins, ponds, and sloughs. Found throughout the study area, except the Panhandle.

Associated species: peppervine (*Ampelopsis arborea*), false indigo (*Amorpha fruticosa*), boneset (*Eupatorium serotinum*), and water pepper (*Polygonum hydropiperoides*).

Shrubland vegetation associations

6.. Buttonbush (Cephalanthus occidentalis) shrubland vegetation

Habitat: margins of sloughs, lakes and man-made impoundments.

Associated species: softstem bulrush (*Scirpus validus*) and waterwillow (*Justicia americana*).

7. Buttonbush - swamp privet (Forestiera acuminata) shrubland vegetation

Habitat: slough and lake margins. This community was found in Creek County and represents a western range extension for this species.

Associated species: similar to shrubland vegetation association 5.

8. Sandbar willow (Salix exigua) shrubland vegetation

Habitat: margins of sandy streams. Occurs throughout the study area, but to a limited degree in the Panhandle.

Associated species: boneset (*Eupatorium serotinum*), switchgrass (*Panicum virgatum*), Virgina creeper (*Parthenocissus quinquefolia*), camphorweed (*Pluchea odorata*), saltcedar (*Tamarix chinensis*), and American bulrush (*Schoenoplectis americana*). Peachleaf willow (*Salix amygdaloides*) is an associate at Panhandle sites.

Herbaceous vegetation associations

9. Coontail (Ceratophyllum demersum) herbaceous vegetation

Habitat: ponds and other aquatic beds. Found throughout much of the study area. Associated species: duckweeds (*Lemna minor* and *L. valdiviana*), seedbox (*Ludwigia palustris*), and sego pondweed (*Potamogeton pectinatus*).

10. Saltgrass (Distichlis spicata) herbaceous vegetation

Habitat: saline soils along floodplains and in playa lakes. Often grades into the American bulrush herbaceous vegetation type.

Associated species: western ragweed (*Ambrosia psilostachya*), saltmarsh aster (*Aster subulatus*), rabbitfoot grass (*Polypogon monospeliensis*), and American bulrush (*Schoenoplectis americana*).

11. Creeping burhead (Echinodorus cordifolius) herbaceous vegetation

Habitat: drawdown areas and lake shorelines. Sporadic throughout the study area.

Associated species: blue mud plantain (*Heteranthera limosa*), spanglegrass (*Leptochloa filiformis*), spikerush (*Eleocharis radicans*), and duckweeds (*Lemna spp. and Spirodela polyrhiza*).

12. Upright burhead (Echinodorus berteroi) herbaceous vegetation

Habitat: drawdown areas and lake shorelines. Sporadic throughout the study area.Associated species: similar to number 11.

13. Common spikerush (Eleocharis palustris) herbaceous vegetation

Habitat: lake shorelines and ponds. Common throughout the study area.

Associated species: barnyard grass (*Echinochloa crus-galli*), smartweed (Polygonum *pensylvanicum*), dock (*Rumex altissimus*), spangletop (*Leptochloa filiformis*), and umbrella sedge (*Cyperus* spp.).

13.a. Common spikerush - pepperwort (Marsilea vestita) herbaceous vegetation

Habitat: occurs primarily in interdunal swale ponds, buffalo wallows, and wet depressions.

Associated species: barnyard grass (*Echinochloa crus-galli*), smartweed

(Polygonum *pensylvanicum*), spangletop (*Leptochloa filiformis*), and umbrella sedge (*Cyperus* spp.).

14. Blue mud plantain (*Heteranthera limosa*) - longlobed arrowhead (*Sagittaria longiloba*) herbaceous vegetation

Habitat: interdunal ponds. Frequent in western portion of the study area.

Associated species: toothcup (*Ammania coccinea*), barnyard grass (*Echinochloa crus*galli), spangletop (*Leptochloa fascicularis*), water hyssop (*Bacopa rotundifolia*), and pepperwort (*Marsilea vestita*).

15. Softstem rush (Juncus effusus) herbaceous vegetation

Habitat: marshes, seeps, shorelines and sloughs. Limited to eastern portion of the study area.

Associated species: sedges (*Carex* spp.), buttonbush (*Cephalanthus occidentalis*), seedbox (*Ludwigia palustris*) water pepper (*Polygonum hydropiperoides*), and cattails (*Typha* spp.)

16. Water primrose (Jussiaea peploides) - water pepper (*Polygonum hydropiperoides*) herbaceous vegetation

Habitat: lacustrine wetlands

Associated species: buttonbush (*Cephalanthus occidentalis*), hibiscus (*Hibiscus laevis*), and water lotus (*Nelumbo lutea*).

17. Waterwillow (Justicia americana) herbaceous vegetation

Habitat: banks and cobble bars along slow moving streams and lake margins. Common in eastern portion of study area.

Associated species: false indigo (*Amorpha fruticosa*), saltmarsh (*Aster subulatus*), rice and cutgrass (*Leersia oryzoides*).

18. Watercress (Rorippa nasturtium_aquaticum) herbaceous vegetation

Habitat: seeps, springs and spring-fed streams. Infrequent throughout the study area. Associated species: toothcup (*Ammania coccinea*), seedbox (*Ludwigia palustris*), and water parsnip (*Berula erecta*).

19. Water lotus (Nelumbo lutea) herbaceous vegetation

Habitat: lacustrine wetlands. Most common in the eastern portion of the study area.

Associated species: hibiscus (*Hibiscus laevis*), sego pondweed (*Potamogeton pectinatus*), swamp knotweed (*Polygonum amphibium*) and cattails (*Typha* spp.)

20. Waterlilly (Nymphaea odorata) herbaceous vegetation

Habitat: lacustrine wetlands. Limited to the eastern portion of the study area and rare in occurrence.

Associated species: coontail (Ceratophyllum demersum), sego pondweed

(Potamogeton pectinatus) and bladderworts (Utricularia spp.).

21. Common reed (*Phragmites australis*) herbaceous vegetation

Habitat: stream margins. Common in western portion of study area.

Associated species: salt marsh (*Aster subulatus*), camphorweed (*Pluchea odorata*), dock (*Rumex altissimus*), American bulrush (*Schoenoplectis americana*), and cattails (*Typha* spp.).

22. Swamp knotweed (Polygonum amphibium) herbaceous vegetation

Habitat: wet depressions, lakes and ponds. Scattered throughout the study area and infrequent in occurrence.

Associated species: salt marsh (*Aster subulatus*), camphorweed (*Pluchea odorata*), dock (*Rumex altissimus*), American bulrush (*Schoenoplectis americana*), and cattails (*Typha* spp.).

23. Arrowhead (Sagittaria latifolia) herbaceous association

Habitat: ponds, interdunal swales, and sloughs. In frequent throughout much of the study area.

Associated species: barnyard grass(*Echinochloa crus-galli*), common spikerush (*Eleocharis palustris*), and blue mud plantain (*Heteranthera limosa*).

24. American bulrush (Schoenoplectis americana) herbaceous association

Habitat: floodplains, backswamp, and lake margins. Throughout the study area, but most common in the west and panhandle.

Associated species: salt marsh aster (*Aster subulatus*), saltgrass (*Distichlis spicata*), common spikerush (*Eleocharis palustris*), Torrey's rush (*Juncus torreyi*), and rabbitfoot grass (*Polypogon monospeliensis*).

25. Powdery blue thalia (Thalia dealbata) herbaceous vegetation

Habitat: marshes, ponds, and lake margins. Found at only one site in Creek County.Listed by Hoagland (2000) as occurring in southeastern Oklahoma and Jefferson County.This plant had not been previously reported from Creek County.

Associated species: hibiscus (Hibiscus laevis), softstem bulrush (Schoenoplectis

tabernamontani), swamp knotweed (Polygonum amphibium), and cattail (Typha) species.

26. Cattail (*Typha* species) herbaceous vegetation

Note: three subtypes were described (Table 3). However, they will be considered collectively here. This is because cattails hybridize readily and can be difficult to identify in the field as a result.

Habitat: floodplains, backswamp, and lake margins.

Associated species: water hemlock (*Cicuta maculata*), cardinal flower (*Lobelia cardinalis*), water lotus (*Nelumbo lutea*), frogbit (*Phyla nodiflora*), camphor flower (*Pluchea odorata*), dock (*Rumex altissimus*), American bulrush (*Schenoplectis americana*) and softstem bulrush (*Schoenoplectis tabernaemontani*).

The vast majority of sites sampled were dominated by herbaceous vegetation. This represents the increasing frequency of herbaceous vegetation as one proceeds from east to west in the study area. We also included more sites herbaceous because of the need to better document herbaceous wetland vegetation (Hoagland 2000). In applying this classification for future research, it should be noted that more than one of these vegetation types could occur at a site. This reflects both the spatial trend of saturated to inundated soils and well as the temporal aspect of wetland drawdown. For example, a zone of buttonbush shrubland vegetation often surrounds various herbaceous vegetation types (i.e., water primrose or cattail herbaceous). Or patches of blue mudplantain - loglobed arrowhead herbaceous vegetation are often surrounded by common spikerush vegetation. Likewise, a site will change through time. Water primrose vegetation will give way to burhead vegetation following a drawdown.

Literature Cited

- Angermeier, P. L., and J. R. Karr. 1994. Biological integrity versus biological diversity as policy directives. Bioscience 44: 690-697.
- Barbour, M.G., J.H. Burk, and W.D. Pitts, 1987. Terrestrial Plant Ecology. Benjamin/Cummings, Menlo Park, California.
- Blair, W. F., and T. H. Hubbell. 1938. The biotic districts of Oklahoma. American Midland Naturalist 20: 425_454.
- Brabander, J. J., Masters, R. E., and Short, R. M. 1985. *Bottomland hardwoods of eastern Oklahoma*. US Fish and Wildl. Serv., Tulsa, OK.
- Bruner, W. E. 1931. The vegetation of Oklahoma. Ecological Monographs 1: 100_188.
- Cowardin, L. M., V. Carter, F. C. Golet and E. T. LaRoe. 1979. Classification of Wetland and Deepwater Habitats of the United States. U. S. Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-79/31.
- Curtis, N. M., and W. E. Ham. 1979. Geomorphic provinces of Oklahoma. In: Johnson, K.S., et al., editors. Geology and Earth resources of Oklahoma. Oklahoma Geological Survey, Norman, Oklahoma.
- Dahl, T. E. 1990. Wetlands losses in the United States, 1780s to 1980s. U. S. Fish and Wildlife Service, Washington, D. C.
- Duck, L. G., and J. B. Fletcher. 1945. A survey of the game and furbearing animals of Oklahoma; chapter 2, the Game Types of Oklahoma. Oklahoma Game and Fish Commission, Division of Wildlife Restoration and Research. Oklahoma City.
- Gauch, H. G. 1982. Mulivariate analysis in community ecology. Cambridge University Press.

- Hill, M. O. 1979. TWINSPAN A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University. Ithaca, New York. USA
- Hoagland, B.W., I. Butler, and F.L. Johnson. 1999. Ecology and vegetation of the Cross
 Timbers in Kansas, Oklahoma and Texas. In: Anderson, R.C., J. Fralish, and J. Baskin,
 editors. The savanna, barren and rock outcrop communities of North America.
 Cambridge University Press.

Hoagland, B. W. 2000. The vegetation of Oklahoma: a classification for landscape mapping and conservation planning. Southwestern Naturalist **45**: 385-420.

- Kartesz, J. T. 1994. A synonymized checklist of the vascular flora of the United States, Canada, and Greenland, volume 1 checklist. Timber Press. Portland, Oregon.
- Kent, M., and P. Coker, 1992. Vegetation Description and Analysis. Belhaven Press, London.
- Kusler, J. A. 1983. Our national wetland heritage: a protection guidebook. Environmental Law Institute, Washington, D. C.
- Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands, second edition. Van Nostrand Reinhold, New York, USA.
- Mueller-Dombois, D., and H. Ellenberg, 1974. Aims and Methods of Vegetation Ecology. John Wiley and Sons, New York.
- Neal, J. A. and E. S. Jemison. 1990. Ecological processes and cumulative impacts: the Texas/Oklahoma bottomland forest protection program. Lewis Publishers. Chelsea, MI.

Rice, E. L., and W. T. Penfound. 1959. The upland forests of Oklahoma. Ecology 40: 592-608.

- Saunders, D. A., R. J. Hobbs, and C. R. Margules. 1990. Biological consequences of ecosystem fragmentation: a review. Conservation Biology **5**: 18-32.
- Tiner, R. W. 1984. Wetlands of the United States: current status, recent trends. National wetlands Inventory, U. S. Fish and Wildlife Service, Washington, D. C.

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
1	Anderson Creek Bridge	e 11 August 1999	Woods	T27N, R17W, S18	40738N 4931E	Cimarron
2	Beaver WMA_ Slough	20 August 1998	Beaver	T4N, R22W, S1	40773N 3536E	Beaver
3	Bezerko mama	17 June 1999	Major	T20N, R11W, S3	40112N 55725E	Cimarron
4	Birch Lake	22 September 1999	Osage	T24N, R10E, S36		Arkansas
5	Birch lake pond north	22 September 1999	Osage	T24N, R10E, S14		Arkansas
6	Bluebells	7 August 1998	Kingfisher	T18N, R9W, S1	39905N 5804E	Cimarron
7	Braum's bouquet	13 August 1998	Kingfisher	T10N, R7W, S11		Canadian
8	Buffalo Creek	16 July 1998	Harper	T27N, R23W, S16	407485N 43891E	Cimarron
9	Buttercups bottom #1	17 June 1999	Major	T22N, R11W, S18	40257N 55195E	Cimarron

Table 1: Location of wetland cluster-plots sampled in northwest Oklahoma.

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
10	Buttercups bottom #2	17 June 1999	Major	T22N, R11W, S18	402565N 5521E	Cimarron
11	Carrumpa Creek	11 August 1999	Cimarron	T2N, R1E, S7&8		Beaver
12	Chandler Deep Fork BLH	17 September 1998	Lincoln	T14N, R4E, S32,	39458N 6893E	Deep Fork
13	Chandler DF Creek Bridge	17 September 1998	Lincoln	T14N, R4E, S28&33	394725N 6909E	Deep Fork
14	Chandler Df marsh	21 September 1999	Lincoln	T14N, R4E, S28		Deep Fork
15	Chandler Seward Lake	17 September 1998	Lincoln	T14N, R4E, S19	39491N 6885E	Deep Fork
16	Cord cove	10 August 1999	Kay	T26N, R2W, S31	406185N 63815E	Arkansas
17	County Road Marsh	13 August 1998	Canadian	T10N, R7W, S8		Canadian
18	Creeping bur	10 August 1999	Grant	T26N, R6W, S16	406515N 60365E	Arkansas

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
19	Dead Indian Lake	14 September 1999	Roger Mills	T15N, R24W, S26		Canadian
						North
20	Deep Fork Dyke	25 September 1998	Okfuskee	T10N, R10E, S21	39133N 74999E	Canadian
21	Devil's canyon	29 September 1998	Caddo	T11N, R11W, S25	39176N 5623E	Washita
22	Dolby Springs	16 July 1998	Harper	T27N, R24W, S10	40759N 4311E	Cimarron
23	Drill Pond	7 May 1999	Logan	T15N, R1E, S23	39582N 6654E	Deep Fork
24	Duckweed	17 June 1998	Payne	T17N, R4E, S3		Cimarron
25	East Sandstone	14 September 1999	Roger Mills	T12N, R22W, S9		Canadian
26	Easter Parade	12 August 1999	Cimarron	T5N, R2E, S11		Beaver
27	Burhead	10 August 1999	Woods	T23N, R13W, S7	40369N 5326E	Cimarron

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
						North
28	Phragmites Rock	26 August 1999	Woodward	T23N, R20W, S36		Canadian
29	Frog Fort	10 August 1999	Woods	R23N, T13W, S18	403525N 5328E	Cimarron
30	Frogeyed Pond	7 August 1998	Garfield	T24N, R7W, S27	404336N 59512E	Arkansas
31	Frogger Swale	22 July 1998	Ellis	T20N, R23W, S33	400275N 44145E	Canadian
32	Ft. Supply	25 August 1999	Woodward			North
				T24N, R22W, S21		Canadian North
33	Ft. Supply S_1	25 August 1999	Woodward	T23N, R22W, S17		Canadian
34	Giant Sag	10 August 1999	Alfalfa	T24N, R12W, S16	40464N 54645E	Arkansas
35	Grant's Marsh	19 August 1998	Grant	T27N, R8W, S16	407415N 58260E	Arkansas
26	Create Wetland	12 August 1000	Weedmend			North
36	Greg's Wetland	12 August 1999	Woodward	T20N, R17W, S4,5,8,9		Canadian

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
37	Groen	7 August 1998	Garfield	T23N, R7W, S12	40381N 5994E	Arkansas
38	Harper_Beaver	11 August 1999	Harper	T27N, R26W, S3&4	4078N 4111E	Beaver
39	Heaven on Wheels	25 June 1998	Payne	T19N, R4E, S19	39977N 6882E	Cimarron
40	Heyburn WMA	16 June 1998	Creek	T17N, R8E, S12	39835N 7336E	Arkansas
41	High Pressure	10 August 2000	Grant	T26N, R6W, S15	40647N 6051E	Arkansas
42	Hajek Marsh	7 August 1998	Kingfisher	T18N, R8W, S6	39913N 5803E	Cimarron
43	Horseshoe	31 July 1998	Kay	T25N, R1E, S28	405395N 66165E	Arkansas
44	Hudson Lake	22 September 1999	Osage	T27N, R12E, S20		Arkansas
45	Hula WMA	11 June 1998	Osage	T29N, R10E, S16		Caney

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
46	Jefferson Carex	10 August 1999	gran	T26N, R6W, S13	406475N 6070E	Arkansas
47	Lake Etling	12 August 1999	Cimarron	T4N, R2E, S6		Beaver
48	Lake Lattawanna	6 August 1998	Logan	T17N, R4W, S35	39734N 6267E	Cimarron
49	Landowner Richard	2 July 1999	Grant	T27N, R8W, S5	407745N 58135E	Arkansas
50	Lim-Lon Playa	11 August 1999	Beaver	T5N, R21E, S7		Beaver
51	Heteranthera marsh	25 August 1999	Major	T22N, R10W, S10		CIMARRON
52	Little Deep Fork	16 June 1998	Creek	T16N, R7E, S36	396783N 17241E	Canadian
53	Lone Willow	25 June 1998	Payne	T17N, R2E, S1	39835N 6772E	Cimarron
54	Sagittaria Marsh	21 July 1998	Dewey	T19N, R20W, S21	39961N 4699E	Canadian

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
55	Loosestrife	5 August 1999	Logan	T15N, R2W, S6	39639N 6408E	Cimarron
56	Mesa Marsh	12 August 1999	Cimarron	T5N, R1E, S13		Beaver
57	Mother Lode	10 August 1999	Woods	T23N, R13W, S7	40369N 5336E	Cimarron
58	N Beaver WMA	20 August 1998	Beaver	T4N, R22W, S12	407625N 3535E	Beaver
59	Newkirk Lake	31 July 1998	Kay	T28N, R2E, S36 NE/4,NE/4	408195N 67653E	Arkansas
60	Nodosus Marsh	11 August 1999	Texas	T3N, R13E, S25		Beaver
61	No_Name Site	25 August 1999	Major	T22N, 15W, S33		CIMARRON
62	Okemah Lake	27 October 1998	Okfuskee	T12N, R9E, S23	393265N 74335E	North Canadian
63	Overholser Bridge	25 August 1998	Oklahoma	T12N, R5W, S13	39303N 6203E	North Canadian

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
64	Overholser South	25 August 1998	Oklahoma	T12N, R5W, S13	39303N 6203E	North Canadian
65	Packsaddle WMA	2 July 1998	Ellis	T16N, R24W, S14	39693N 43445E	Canadian
66	Patchwork Pasture	25 August 1999	Woodward	T22N, R19W, S24		North Canadian
67	Pawnee Lake1	26 June 1998	Pawnee	T22N, R5E, S20	40265N 6974E	Arkansas
68	Pawnee Lake2	26 June 1998	Pawnee	T22N, R5E, S19	40297N 6971E	Arkansas
69	Pawnee Lake3	26 June 1998	Pawnee	T22N, R5E, S19	40268N 6967E	Arkansas
70	Pawnee Lake Dam BLH	26 May 1999	Pawnee	T22N, R5E, S30	40257N 6975E	Arkansas
71	Ponca Lake	31 July 1998	Kay	T26N, R2E, S13	40668N 67515E	Arkansas
72	Potato Pond	17 June 1999	Blaine	T17N, R12W, S14	39783N 5488E	North Canadian

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
73	Potomogeton Ponds	17 June 1999	Major	T23N, R11W, S33	40304N 5552E	Cimarron
74	Pumper Dock	17 June 1999	Major	T20N, R11W, S14	400807N 5586E	Cimarron
75	Red Horse Ck.	11 August 1999	Woods	T27N, R17W, S22	40736N 4984E	Cimarron
76	Reverse Potato	17 June 1999	Blaine	T17N, R12W, S10	39799N 5475E	North Canadian
77	Roman Nose	22 October 1998	Blaine	T17N, R12W, S24	39769N 5518E	Cimarron
78	Rubus Rules	21 July 1998	Dewey	T19N, R18W, S9	399975N 48931E	North Canadian
79	So. Beaver WMA	21 August 1998	Beaver	T4N, R22W, S10	40769N 3508E	Beaver
80	Salt Plains-Wilson's Meadow	26 August 1999	Alfalfa	T27N, R9W, S20		Arkansas
81	Salt Plains_Wilson's Pond	26 August 1999	Alfalfa	T27N, R9W, S20		Arkansas

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
82	Salt Plains_Bridge	26 August 1999	Alfalfa	T27N, R9W, S7		Arkansas
83	Sandpiper Swale	22 July 1998	Ellis	T20N, R24W, S36	40017N 4366E	Canadian
84	Sandpit typha	21 July 1998	Dewey	T18N, R2oW, S22	398549N 4713E	Canadian
85	SH60 Pond	22 September 1999	Osage	T26N, R11E, S12		Arkansas
86	Skiatook WMA	21 September 1999	Osage	T22N, R9E, S13		Arkansas
87	Skiatook WMA _Buck	21 September 1999	Osage	T22N, R10E, S20		Arkansas
88	Sooner Lake South	30 July 1998	Noble	T22N, R2E, S12	403010N 6759E	Arkansas
89	Sooner Lake West	30 July 1998	Noble	T22N, R2E, S10	403025N 67326E	Arkansas
90	Souter's Bend	11 June 1998	Osage	T21N, R7E, S5	40227N 7183E	Arkansas

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
91	Southard North Marsh	17 June 1999	Blaine	T18N, R12W, S4	39907N 5467E	Cimmaron
92	Swamp Privet	17 September 1998	Lincoln	T13N, R5E, S6	39455N 69728E	Deep Fork
93	Taloga bridge	15 July 1998	Dewey	T18N, R17W, S12	398975N 50282E	Canadian
94	Taylor Lake	14 September 1999	Roger Mills	T12N, R23W, S15		Canadian
95	Thalia Throne1	24 June 1998	Okfuskee	T13N, R8E, S1	394585N 73455E	Deep Fork
96	Thalia Throne2	24 June 1998	Okfuskee	T13N, R8E, S1	3944N 7345E	Deep Fork
97	Three sisters	2 July 1999	Grant	T27N, R6W, S31	40702N 59875E	Arkansas
98	Trail Creek	21 July 1998	Dewey	T18N, R20W, S23	398549N 4734E	Canadian
99	Vulture Marsh	29 September 1998	Caddo	T10N, R10W, S28	3908N 5677E	Washita

Site #	Site Name	Date Surveyed	County	Township & Range	UTM Coord.	Drainage
100	Washita NWR1	1 July 1998	Custer	T13N, R20W, S1	394215N 47539E	Washita
101	Washita NWR2	1 July 1998	Custer	T13N, R20W, S1	39425N 4753E	Washita
102	Weleetka lake	27 October 1998	Okfuskee	T10N, R11E, S17	39137N 7578E	North Canadian
103	Wet Shoes	30 July 1998	Noble	T22N, R2E, S34	40237N 6731E	Arkansas
104	Wetumka Lake	25 September 1998	Okfuskee	T10N, R10E, S33	39088N 7501E	North Canadian
105	Woodward50	25 August 1999	Woodward	T22N, R19W, S9		North Canadian

Table 2: Number of plots sampled by site. The first column indicates the actual number of plots sampled, the second columns represents the number of sites sampled with that number of plots, and the third columns sums the total area sampled by a given number of plots.

Number of plots	Sites	Area sampled (m ²)
1	7	70
2	29	580
3	32	960
4	17	680
5	20	1,000
Total	105	3,290

1

Table 3: Wetland vegetation types from northwestern Oklahoma.

Wetland vegetation type	No. of Sites
Forest vegetation	
1. Sycamore (Platanus occidentalis) - boxelder (Acer negundo) forest vegetation	2
2. Silver maple (<i>Acer saccharinum</i>) - boxelder (<i>Acer negundo</i>) forest vegetation	2
3. Pecan (Carya illinoensis) - sugarberry (Celtis laevigata) forest vegetation	1
4. Bur oak (Quercus macrocarpa) - Shumard oak (Quercus shumardii) forest vegetation	1
Weedland vogetetion	
Woodland vegetation	

5. Black willow (Salix nigra) woodland vegetation

Wetland vegetation type	No. of Sites
Shrubland vegetation	
6. Buttonbush (<i>Cephalanthus occidentalis</i>) shrubland vegetation	13
	15
7. Buttonbush - swamp privet (<i>Forestiera acuminata</i>) shrubland vegetation	1
8. Sandbar willow (<i>Salix exigua</i>) shrubland vegetation	1
Herbaceous vegetation	
9. Coontail (Ceratophyllum demersum) herbaceous vegetation	1
10. Saltgrass (Distichlis spicata) herbaceous vegetation	1
11. Creeping burhead (Echinodorus cordifolius) herbaceous vegetation	2

Wetland vegetation type	No. of Sites	
12. Upright burhead (<i>Echinodorus berteroi</i>) herbaceous vegetation	1	
13. Common spikerush (Eleocharis palustris) herbaceous vegetation	1	
13.a. Common spikerush (E. palustris) - pepperwort (Marsilea vestita) herbaceous vegetation	2	
14. Blue mud plantain (<i>Heteranthera limosa</i>) - longlobed arrowhead (<i>Sagittaria longiloba</i>) herbaceous vegetation	7	
15. Soft rush (<i>Juncus effusus</i>) herbaceous vegetation	1	
16. Water primrose (Jussiaea peploides) - water pepper (Polygonum hydropiperoides) herbaceous vegetation	6	
17. Waterwillow (Justicia americana) herbaceous vegetation	1	
18. Watercress (Rorippa nasturtium_aquaticum) herbaceous vegetation	1	
19. Water lotus (<i>Nelumbo lutea</i>) herbaceous vegetation	5	
20. Waterlilly (Nymphaea odorata) herbaceous vegetation	1	

Hoagland, et a	l.; Northwest	Oklahoma	wetlands
----------------	---------------	----------	----------

Wetland vegetation type	No. of Sites
21. Common reed (Phragmites australis) herbaceous vegetation	2
22. Swamp knotweed (<i>Polygonum amphibium</i>) herbaceous vegetation	1
23. Broadleaf arrowhead (Sagittaria latifolia) herbaceous vegetation	4
24. American bulrush (Schoenoplectus americanus) herbaceous vegetation	9
25. Powdery blue thalia (Thalia dealbata) herbaceous vegetation	1
26. Cattail (<i>Typha</i> spp.) herbaceous vegetation	
26a. Narrowleaf cattail (Typha angustifolia) herbaceous vegetation	5
26b. Southern cattail (Typha domingensis) herbaceous vegetation	29
26c. Broadleaf cattail (Typha latifolia) herbaceous vegetation	1

Site #	Cowardin et al. (1979) classification unit				
	System	Subsystem	Class	Site rank	
1	Palustrine	-	Emergent	В	
2	Palustrine	-	Emergent	В	
3	Palustrine	-	Emergent	С	
4	Palustrine	-	Scrub-shrub	C	
5	Palustrine	-	Aquatic bed	C	
6	Palustrine	-	Emergent	В	
7	Palustrine	-	Emergent	С	
8	Riverine	Lower Perannial	Emergent	С	
9	Palustrine	-	Scrub-shrub	В	
10	Palustrine	-	Scrub-shrub	В	
11	Palustrine	-	Emergent	В	
12	Palustrine	-	Forested	В	
13	Riverine	Lower Perennial	Emergent	с	

Table 4: Wetland classification and heritage rank for northwestern Oklahoma wetland sites.

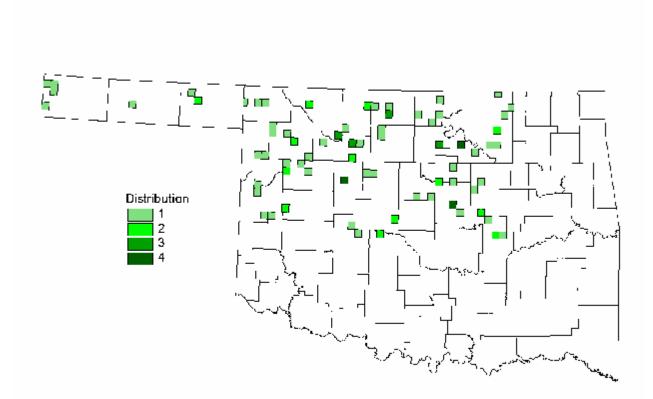
Site #	Cowardin et al. (1979) classification unit				
	System	Subsystem	Class	Site rank	
14	Palustrine	-	Emergent	В	
15	Palustrine	-	Emergent	с	
16	Palustrine	-	Emergent	С	
17	Palustrine	_	Emergent	С	
18	Palustrine	_	Emergent	В	
19	Palustrine	_	Emergent	В	
20	Palustrine	_	Emergent	С	
21	Palustrine	_	Emergent	С	
22	Palustrine	_	Emergent	В	
23	Palustrine	_	Emergent	С	
24	Palustrine	_	Forested	В	
25	Palustrine	_	Scrub-shrub	С	
26	Palustrine	_	Emergent	С	
27	Palustrine	_	Emergent	В	

Site #	Cowardin et al. (1979) classification unit					
	System	Subsystem	Class	Site rank		
28	Palustrine	-	Emergent	С		
29	Palustrine	-	Emergent	В		
30	Palustrine	-	Aquatic bed	с		
31	Palustrine	-	Emergent	В		
32	Palustrine	-	Scrub-shrub	с		
33	Palustrine	-	Emergent	В		
34	Palustrine	-	Emergent	В		
35	Palustrine	_	Emergent	В		
36	Palustrine		Emergent	В		
37	Lacustrine	Limnetic	Aquatic bed	с		
38	Palustrine	-	Emergent	В		
39	Lacustrine	Limnetic	Aquatic bed	с		
40	Palustrine	-	Forested	С		
41	Palustrine	-	Emergent	С		

Site # Cowardin et al. (1979) classification unit

Site #	Cowardin et al. (1979) classification unit				
	System	Subsystem	Class	Site rank	
42	Palustrine	_	Emergent	В	
43	Palustrine	-	Scrub-shrub	С	
44	Palustrine	_	Scrub-shrub	В	
45	Palustrine	-	Forested	С	
46	Palustrine	-	Emergent	С	
47	Palustrine	-	Emergent	В	
48	Palustrine	-	Emergent	С	
49	Palustrine	-	Emergent	С	
50	Palustrine	_	Emergent	С	
51	Palustrine	-	Emergent	С	
52	Palustrine	-	Emergent	С	
53	Palustrine	-	Emergent	В	
54	Palustrine	-	Emergent	В	
55	Palustrine	_	Scrub-shrub	С	

Site # Cowardin et al. (1979) classification unit


Site #	Cowardin et al. (1979) classification unit				
	System	Subsystem	Class	Site rank	
56	Palustrine	-	Emergent	В	
57	Palustrine	-	Emergent	В	
58	Palustrine	_	Emergent	В	
59	Lacustrine	Littoral	Emergent	C	
60	Palustrine	-	Emergent	C	
61	Palustrine	-	Emergent	C	
62	Palustrine	-	Forested	C	
63	Lacustrine	Littoral	Emergent	C	
64	Lacustrine	Littoral	Emergent	В	
65	Palustrine	-	Emergent	В	
66	Palustrine	-	Emergent	C	
67	Lacustrine	Littoral	Emergent	В	
68	Lacustrine	Littoral	Emergent	В	
69	Lacustrine	Limnetic	Aquatic bed	В	

Site #	Cowardin et al. (1979) classification unit				
	System	Subsystem	Class	Site rank	
70	Palustrine	-	Forested	В	
71	Lacustrine	Littoral	Emergent	с	
72	Palustrine	-	Emergent	с	
73	Palustrine	-	Emergent	В	
74	Palustrine	-	Emergent	С	
75	Palustrine	-	Emergent	С	
76	Palustrine	-	Emergent	С	
77	Lacustrine	Littoral	Emergent	В	
78	Palustrine	_	Emergent	В	
79	Palustrine	-	Emergent	В	
80	Palustrine	-	Emergent	В	
81	Palustrine	-	Aquatic bed	В	
82	Palustrine	_	Scrub-shrub	В	
83	Palustrine	_	Emergent	В	

84	Palustrine	-	Emergent	С
85	Palustrine	_	Scrub-shrub	С
86	Palustrine	-	Scrub-shrub	С
87	Palustrine	-	Scrub-shrub	С
88	Lacustrine	Littoral	Emergent	С
89	Lacustrine	Littoral	Emergent	С
90	Palustrine	-	Forested	С
91	Palustrine	-	Emergent	В
92	Palustrine	-	Scrub-shrub	В
93	Palustrine	-	Emergent	В
94	Palustrine	-	Scrub-shrub	В
95	Palustrine	-	Emergent	В
96	Palustrine	-	Emergent	В
97	Palustrine	-	Emergent	В
98	Riverine	Lower Perennial	Emergent	С
99	Palustrine	-	Emergent	С

100	Palustrine	-	Emergent	В
101	Palustrine	_	Emergent	С
102	Lacustrine	Littoral	Emergent	В
103	Palustrine	-	Emergent	С
104	Lacustrine	Littoral	Emergent	С
105	Palustrine	_	EW	С

Figure 1: Location of sites. Each site is identified by a number which corresponds to the sample plots listed Table 1.

